Regression on Heterogeneous Fuzzy Data
نویسندگان
چکیده
A novel formalism is presented, which enables the processing of heterogeneous data including numeric-, interval-valued-, or fuzzydata. The data in question are represented herein as interval-supported fuzzy sets with suitable membership functions. The term Fuzzy Interval Number (FIN) denotes one of the aforementioned types of data. A FIN can have either a positive or a negative membership function. We show a number of mathematical tools/properties in the set of FIN’s including, a partial ordering relation, a distance function, an addition and a multiplication operation; hence we can talk of FIN-arithmetic. The presented formalism is used to carry out regression on FIN’s. Potential applications of regression on FIN’s include reduction in the number of rules in a fuzzy system, generalization of fuzzy rules, etc. Two examples demonstrate the merits of the presented formalism.
منابع مشابه
Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis
In this paper we propose a new approach, called a fuzzy class model for Poisson regression, in the analysis of heterogeneous count data. On the basis of fuzzy set concept and fuzzy classification maximum likelihood (FCML) procedures we create an FCML algorithm for fuzzy class Poisson regression models. Traditionally, the EM algorithm had been used for latent class regression models. Thus, the a...
متن کاملA committee machine approach for predicting permeability from well log data: a case study from a heterogeneous carbonate reservoir, Balal oil Field, Persian Gulf
Permeability prediction problem has been examined using several methods such as empirical formulas, regression analysis and intelligent systems especially neural networks and fuzzy logic. This study proposes an improved and novel model for predicting permeability from conventional well log data. The methodology is integration of empirical formulas, multiple regression and neuro-fuzzy in a commi...
متن کاملOn cluster-wise fuzzy regression analysis
Since Tanaka et al. (1982) proposed a study of linear regression analysis with a fuzzy model, fuzzy regression analysis has been widely studied and applied in a variety of substantive areas. Regression analysis in the case of heterogeneity of observations is commonly presented in practice. The authors' main goal is to apply fuzzy clustering techniques to fuzzy regression analysis. Fuzzy cluster...
متن کاملMultiple Fuzzy Regression Model for Fuzzy Input-Output Data
A novel approach to the problem of regression modeling for fuzzy input-output data is introduced.In order to estimate the parameters of the model, a distance on the space of interval-valued quantities is employed.By minimizing the sum of squared errors, a class of regression models is derived based on the interval-valued data obtained from the $alpha$-level sets of fuzzy input-output data.Then,...
متن کاملEvaluation of hybrid fuzzy regression capability based on comparison with other regression methods
In this paper, the difference between classical regression and fuzzy regression is discussed. In fuzzy regression, nonphase and fuzzy data can be used for modeling. While in classical regression only non-fuzzy data is used. The purpose of the study is to investigate the possibility of regression method, least squares regression based on regression and linear least squares linear regression met...
متن کامل